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ABSTRACT 

A self-centering steel plate shear wall (SC-SPSW) system has been developed to 
achieve enhanced performance objectives following earthquakes, including 
recentering. The SC-SPSW consists of thin steel infill web panels as the primary 
lateral load resistance and energy dissipation of the system providing a high initial 
stiffness, where the moment resisting connections of conventional SPSW construction 
are replaced with post-tensioned (PT) beam-to-column connections that allow the 
beam to rock about its flanges to provide system recentering.  

The system and component behavior of SC-SPSWs have been investigated 
experimentally through a series of quasi-static and shake table tests. Quasi-static 
subassembly tests at the University of Washington have been conducted to study the 
effects of various design parameters on overall cyclic response and component 
demands. The University at Buffalo experiments focus on third-scale 3-story SC-
SPSWs subjected to quasi-static and shake table testing to investigate system 
behavior. These experiments consider three different PT rocking connection details: 
1) connections that rock about the beam flanges, 2) connections that rock about the 
beam centerline, and 3) an innovative NewZ-BREAKSS connection that rocks about 
the top beam flange only. The latter two PT connections have been proposed as 
methods to essentially eliminate floor system damage due to frame expansion that 
occurs with typical PT connections where the beams rock about their flanges.  
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Table 1. SC-SPSW subassembly specimens 

Specimen Name Ns 
To 

(kN) 
tw(mm) Web plate-to-fish 

plate conn. type 
Load 

protocol 1st story 2nd story 
8s100k 8 445 --  -- Bolted LP-BF 
6s75k 6 334 -- -- Bolted LP-BF 

8s100k20Ga 8 445 0.92 0.92 Bolted LP1 
8s100k16Ga 8 445 1.52 1.52 Bolted LP1 
6s75k20Ga 6 334 0.92 0.92 Bolted LP1 
6s75k16Ga 6 334 1.52 1.52 Bolted LP1 

8s100k20Ga-2 8 445 0.92 0.92 Bolted LP2 
8s100k16Ga20Ga 8 445 1.52 0.92 Bolted LP2 

8s100k20GaW 8 445 0.92 0.92 Welded LP2 

Instrumentation and Displacement History 
Instrumentation was installed on the specimen to measure applied loads, global 
displacements, gap rotations, PT forces, and HBE and VBE strains. The cyclic 
displacement history for the tests (LP1) were a modification of ATC-24 (ATC 1992), 
similar to the history used in previous SPSW experiments by Vian et al. (2009). An 
alternate load protocol (LP2) was used for some of the later tests, as indicated in 
Table 1. This load protocol had fewer cycles at small drift levels. Since the specimens 
without web plates (8s100k and 6s75k) were expected to remain elastic during the 
entire test, a simplified load protocol (LP-BF) was used consisting of two cycles each 
at target peak drifts of 0.5%, 1%, and 2% and one cycle at 3% drift. 

Experimental Results and Observations 

Comparison of web plate thicknesses  

As shown in Fig. 5, for specimens with the same number of PT strands and initial PT 
force, an increase in web plate thickness results in a proportional increase in specimen 
strength and energy dissipation as expected. When comparing the unloading portion 
of the hysteretic responses shown in Fig. 5, specimens with web plates (6s75k20Ga 
and 6s75k16Ga) have additional hysteresis below the unloading portion of the bare 
PT frame (6s75k) response. This additional hysteresis suggests that the web plate has 
some compressive strength that is not accounted for in the idealized tension-only 
behavior assumed in Fig. 2. This compressive strength increases as the web plate 
thickness increases, ranging from 10-20% of the web plate tension field strength 
(Clayton et al. 2011). Further research is being done to understand and better quantify 
this characteristic of web plate behavior. This additional hysteresis in the web plate 
during unloading also provides some resistance to recentering as suggested by the 
increase in residual drift at zero-load as the web plate thickness increases; however, 
with the exception of the negative loading direction of Specimen 6s75k16Ga, the 
specimen with the thickest web plates and lowest PT connection strength and 
stiffness, all test specimens were able to recenter with residual drifts less than 0.2% at 
zero-load (Clayton et al. 2011).  
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connection at the base of the VBEs to allow free rotation and a W6x20 HBE anchor 
beam bolted to the foundation plate.  PT monostrands consisting of 13 mm (1/2 in.) 
diameter 1860 MPa (270 ksi) strands are provided at mid-depth of the HBE, one each 
side of the HBE web with an initial PT force of approximately 20% of the yield 
strength of the PT strands.  The dimensions of the test specimen consist of HBE clear 
spans of 2134 mm (84 in.), level 1 HBE height of 1191 mm (46.875 in.) from 
centerline of foundation clevis connection and floor-to-floor HBE heights of 1289 
mm (50.75 in.) at level 2 and 3.  The test setup consists of (3) MTS 244.51 actuators 
one at each floor level and the use of a self-supporting gravity frame system (GFS) 
developed at UB that provides no in-plane resistance but provides out-of-plane 
stiffness to brace the test specimen.  A displacement control loading based on a 
modified ATC 24 loading protocol was used up to 4% drift.   

UB Experimental Preliminary Test Results 
Instrumentation was provided to record the response at strategic locations to monitor 
global and local responses.  For the experimental results presented, string pots were 
provided at each floor level of the GFS to determine displacements.  Load cells were 
provided at the PT anchorage locations to monitor PT forces.  Actuator forces were 
recorded from the actuator load cells.      

 

Figure 10. Experimental Results: (a) base shear and  
(b) PT force vs. displacement 

From the hysteresis shown in Fig. 10a it observed that self-centering response is 
achieved.  Separation of the infill plate from the boundary frame occurs at around 2% 
drift as indicated by the reduction of base shear capacity.  With the exception of the 
negative stiffness of the experimental results and the compressive strength of the web 
plate at zero displacement noted earlier, the comparison to SAP2000  (using an 
idealized tension-only hysteretic model for the web plates) is comparable.  Note that 
the negative stiffness observed is a consequence of the displacement shape imposed 
to the specimen, which has lead to undesirable actuator interaction across the stories.  
A forced controlled testing protocol will be used for the subsequent tests to eliminate 
this artifact.  From observation of the PT force response (Fig. 10b), the PT strands 
remain elastic.  Some PT force loss is observed which is attributed to anchor seating 
and strand relaxation.  A typical test panel after testing is shown below in Fig. 11b.  
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